Global unique solvability of 3D MHD equations in a thin periodic domain

نویسنده

  • Igor Chueshov
چکیده

We study magnetohydrodynamic equations for a viscous incompressible resistive fluid in a thin 3D domain. We prove the global existence and uniqueness of solutions corresponding to a large set of initial data from Sobolev type space of the order 1/2 and forcing terms from L2 type space. We also show that the solutions constructed become smoother for positive time and prove the global existence of (unique) strong solutions. MSC: primary 76W05; secondary 76D03, 35Q35

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Global Unique Solvability of Initial-Boundary Value Problems for the Coupled Modified Navier–Stokes and Maxwell Equations

The global unique solvability of the first initial-boundary value problem in a bounded, two or three-dimensional domain with fixed perfectly conducting boundaries is proved for the modified Navier–Stokes equations coupled with the Maxwell equations. The system gives a deterministic description of the dynamics for conducting, incompressible, homogeneous fluids. Improved results are proved for th...

متن کامل

Traveling Wave Solutions of 3D Fractionalized MHD Newtonian Fluid in Porous Medium with Heat Transfer

In the present paper, we get exact solutions of Magnetohydrodynamic (MHD) of the fractionalized three-dimensional flow of Newtonian fluid with porous and heat transfer through the traveling wave parameter. The governing equations are produced dependent on established Navier-stokes equations which can be diminished to ordinary differential equation by wave parameter ξ=ax+by+nz+Utα/Γ(α...

متن کامل

Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...

متن کامل

Analyticity of the Global Attractor for the 3d Regularized Mhd Equations

We study the three-dimensional (3D) regularized magnetohydrodynamics (MHD) equations. Using the method of splitting of the asymptotic approximate solutions into higher and lower Fourier components, we prove that the global attractor of the 3D regularized MHD equations consists of real analytic functions, whenever the forcing terms are analytic.

متن کامل

Some Results on the Navier-stokes Equations in Thin 3d Domains

We consider the Navier-Stokes equations on thin 3D domains Qε = Ω×(0, ε), supplemented mainly with purely periodic boundary conditions or with periodic boundary conditions in the thin direction and homogeneous Dirichlet conditions on the lateral boundary. We prove global existence and uniqueness of solutions for initial data and forcing terms, which are larger and less regular than in previous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008